The orbital diagram of tellurium shows that the 1s subshell has 2 electrons, the 2s subshell has 2 electrons, the 2p subshell has 6 electrons, the 3s subshell has 2 electrons, the 3p subshell has 6 electrons, the 4s subshell has 2 electrons, the 3d subshell has 10 electrons, the 4p subshell has 6 electrons, the 5s subshell has 2 electrons, the 4d subshell has 10 electrons, and the 5p subshell has 4 electrons.

## Steps

Here’s how you can draw the orbital diagram of tellurium step by step.

#1 Find electrons of tellurium

#2 Write electron configuration of tellurium

#3 Draw orbital diagram of tellurium

Let’s break down each step in detail.

### Find electrons

The atomic number of tellurium represents the total number of electrons of tellurium. Since the atomic number of tellurium is 52, the total electrons of tellurium are 52.

### Write electron configuration

The electron configuration of tellurium is 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{10} 4p^{6} 5s^{2} 4d^{10} 5p^{4}.

Learn how to find: Tellurium electron configuration

Now in the next step, start drawing the orbital diagram for tellurium.

### Draw orbital diagram

Before drawing the orbital diagram, you should know the three general rules.

- Aufbau principle – electrons are first filled in lowest energy orbital and then in higher energy orbital
- Pauli exclusion principle – two electrons with the same spin can not occupy the same orbital
- Hund’s rule – each orbital should be first filled with one electron before being paired with a second electron

Also, you should know the number of orbitals in each subshell.

We can calculate the number of orbitals in each subshell using the formula: 2ℓ + 1

Where, ℓ = azimuthal quantum number of the subshell

For s subshell, ℓ = 0

For p subshell, ℓ = 1

For d subshell, ℓ = 2

For f subshell, ℓ = 3

So each s subshell has one orbital, each p subshell has three orbitals, each d subshell has five orbitals, and each f subshell has seven orbitals.

Now start to draw!

As mentioned above, the electron configuration of tellurium is 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{10} 4p^{6} 5s^{2} 4d^{10} 5p^{4}. Hence, draw the blank orbital diagram of tellurium up to 5p subshell as follows:

In the above orbital diagram, the box represents an orbital. Each orbital has a capacity of two electrons. And the arrows (↑↓) are drawn inside the box to represent electrons.

Now 1s^{2} indicates that the 1s subshell has 2 electrons. So draw two arrows in the 1s box showing two electrons as follows:

2s^{2} indicates that the 2s subshell has 2 electrons. So draw two arrows in the 2s box showing two electrons as follows:

2p^{6} indicates that the 2p subshell has 6 electrons. So draw six arrows in the 2p box showing six electrons as follows:

3s^{2} indicates that the 3s subshell has 2 electrons. So draw two arrows in the 3s box showing two electrons as follows:

3p^{6} indicates that the 3p subshell has 6 electrons. So draw six arrows in the 3p box showing six electrons as follows:

4s^{2} indicates that the 4s subshell has 2 electrons. So draw two arrows in the 4s box showing two electrons as follows:

3d^{10} indicates that the 3d subshell has 10 electrons. So draw ten arrows in the 3d box showing ten electrons as follows:

4p^{6} indicates that the 4p subshell has 6 electrons. So draw six arrows in the 4p box showing six electrons as follows:

5s^{2} indicates that the 5s subshell has 2 electrons. So draw two arrows in the 5s box showing two electrons as follows:

4d^{10} indicates that the 4d subshell has 10 electrons. So draw ten arrows in the 4d box showing ten electrons as follows:

5p^{4} indicates that the 5p subshell has 4 electrons. So draw four arrows in the 5p box showing four electrons as follows:

That’s it! This is the final orbital diagram of tellurium as we have used all 52 electrons.

**Next:** Iodine orbital diagram

## Related

## More topics

## External links

Deep

Learnool.com was founded by Deep Rana, who is a mechanical engineer by profession and a blogger by passion. He has a good conceptual knowledge on different educational topics and he provides the same on this website. He loves to learn something new everyday and believes that the best utilization of free time is developing a new skill.