Carbon orbital diagram

In the carbon orbital diagram, the 1s subshell accommodates two electrons, the 2s subshell holds another pair, and the 2p subshell contains two electrons.

To depict the carbon orbital diagram, begin by determining the number of electrons from the periodic table. Note the electron configuration for reference and adhere to the essential rules – the Aufbau principle, Pauli exclusion principle, and Hund’s rule. This systematic approach ensures an accurate representation of carbon’s orbital arrangement.

Contents

Steps

Find electrons

The atomic number of carbon represents the total number of electrons of carbon. Since the atomic number of carbon is 6, the total electrons of carbon are 6.

Write electron configuration

The electron configuration of carbon is 1s2 2s2 2p2.

Now in the next step, start drawing the orbital diagram for carbon.

Draw orbital diagram

Before drawing the orbital diagram, you should know the three general rules.

• Aufbau principle – electrons are first filled in lowest energy orbital and then in higher energy orbital
• Pauli exclusion principle – two electrons with the same spin can not occupy the same orbital
• Hund’s rule – each orbital should be first filled with one electron before being paired with a second electron

Also, you should know the number of orbitals in each subshell.

We can calculate the number of orbitals in each subshell using the formula: 2ℓ + 1

Where, ℓ = azimuthal quantum number of the subshell

For s subshell, ℓ = 0
For p subshell, ℓ = 1
For d subshell, ℓ = 2
For f subshell, ℓ = 3

So each s subshell has one orbital, each p subshell has three orbitals, each d subshell has five orbitals, and each f subshell has seven orbitals.

Now start to draw!

As mentioned above, the electron configuration of carbon is 1s2 2s2 2p2. Hence, draw the blank orbital diagram of carbon up to 2p subshell as follows:

In the above orbital diagram, the box represents an orbital. Each orbital has a capacity of two electrons. And the arrows (↑↓) are drawn inside the box to represent electrons.

Now 1s2 indicates that the 1s subshell has 2 electrons. So draw two arrows in the 1s box showing two electrons as follows:

2s2 indicates that the 2s subshell has 2 electrons. So draw two arrows in the 2s box showing two electrons as follows:

2p2 indicates that the 2p subshell has 2 electrons. So draw two arrows in the 2p box showing two electrons as follows:

That’s it! This is the final orbital diagram of carbon as we have used all 6 electrons.