# Boron orbital diagram

In the boron orbital diagram, the 1s subshell accommodates two electrons, the 2s subshell holds another pair, and the 2p subshell has a single electron.

To depict the boron orbital diagram, begin by determining the number of electrons from the periodic table. Note the electron configuration for reference. Adhere to the essential rules – the Aufbau principle, Pauli exclusion principle, and Hund’s rule. This systematic approach ensures an accurate representation of boron’s orbital arrangement.

Contents

## Steps

### Find electrons

The atomic number of boron represents the total number of electrons of boron. Since the atomic number of boron is 5, the total electrons of boron are 5.

### Write electron configuration

The electron configuration of boron is 1s2 2s2 2p1.

Now in the next step, start drawing the orbital diagram for boron.

### Draw orbital diagram

Before drawing the orbital diagram, you should know the three general rules.

• Aufbau principle – electrons are first filled in lowest energy orbital and then in higher energy orbital
• Pauli exclusion principle – two electrons with the same spin can not occupy the same orbital
• Hund’s rule – each orbital should be first filled with one electron before being paired with a second electron

Also, you should know the number of orbitals in each subshell.

We can calculate the number of orbitals in each subshell using the formula: 2ℓ + 1

Where, ℓ = azimuthal quantum number of the subshell

For s subshell, ℓ = 0
For p subshell, ℓ = 1
For d subshell, ℓ = 2
For f subshell, ℓ = 3

So each s subshell has one orbital, each p subshell has three orbitals, each d subshell has five orbitals, and each f subshell has seven orbitals.

Now start to draw!

As mentioned above, the electron configuration of boron is 1s2 2s2 2p1. Hence, draw the blank orbital diagram of boron up to 2p subshell as follows:

In the above orbital diagram, the box represents an orbital. Each orbital has a capacity of two electrons. And the arrows (↑↓) are drawn inside the box to represent electrons.

Now 1s2 indicates that the 1s subshell has 2 electrons. So draw two arrows in the 1s box showing two electrons as follows:

2s2 indicates that the 2s subshell has 2 electrons. So draw two arrows in the 2s box showing two electrons as follows:

2p1 indicates that the 2p subshell has 1 electron. So draw one arrow in the 2p box showing one electron as follows:

That’s it! This is the final orbital diagram of boron as we have used all 5 electrons.