Nickel orbital diagram

The information on this page is ✔ fact-checked.

Nickel orbital diagram
Nickel orbital diagram | Image: Learnool

In the nickel orbital diagram, the 1s subshell accommodates two electrons, the 2s subshell carries another pair, the 2p subshell encompasses six electrons, the 3s subshell contains two electrons, the 3p subshell carries six electrons, the 4s subshell holds two electrons, and the 3d subshell accommodates eight electrons, totaling twenty-eight electrons.

When illustrating the nickel orbital diagram, begin by determining the number of electrons from the periodic table. Utilize the electron configuration for reference and follow the three fundamental rules: the Aufbau principle, Pauli exclusion principle, and Hund’s rule. This systematic approach ensures an accurate representation of nickel’s orbital arrangement.

Steps

Find electrons

A periodic table featuring 118 elements, sorted by increasing atomic numbers | Image: Learnool

To determine the number of electrons in a nickel atom, refer to its atomic number on the periodic table. Nickel, with an atomic number of 28, contains twenty-eight electrons.

Write electron configuration

The electron configuration of nickel is 1s2 2s2 2p6 3s2 3p6 4s2 3d8.

Now in the next step, start drawing the orbital diagram for nickel.

Draw orbital diagram

Before drawing the orbital diagram, you should know the three general rules.

  • Aufbau principle – electrons are first filled in lowest energy orbital and then in higher energy orbital
  • Pauli exclusion principle – two electrons with the same spin can not occupy the same orbital
  • Hund’s rule – each orbital should be first filled with one electron before being paired with a second electron

Also, you should know the number of orbitals in each subshell.

We can calculate the number of orbitals in each subshell using the formula: 2ℓ + 1

Where, ℓ = azimuthal quantum number of the subshell

For s subshell, ℓ = 0
For p subshell, ℓ = 1
For d subshell, ℓ = 2
For f subshell, ℓ = 3

So each s subshell has one orbital, each p subshell has three orbitals, each d subshell has five orbitals, and each f subshell has seven orbitals.

Now start to draw!

As mentioned above, the electron configuration of nickel is 1s2 2s2 2p6 3s2 3p6 4s2 3d8. Hence, draw the blank orbital diagram of nickel up to 3d subshell as follows:

Blank orbital diagram of nickel | Image: Learnool

In the above orbital diagram, the box represents an orbital. Each orbital has a capacity of two electrons. And the arrows (↑↓) are drawn inside the box to represent electrons.

Now 1s2 indicates that the 1s subshell has 2 electrons. So draw two arrows in the 1s box showing two electrons as follows:

Two arrows drawn in 1s box represent 1s2 | Image: Learnool

2s2 indicates that the 2s subshell has 2 electrons. So draw two arrows in the 2s box showing two electrons as follows:

Two arrows drawn in 2s box represent 2s2 | Image: Learnool

2p6 indicates that the 2p subshell has 6 electrons. So draw six arrows in the 2p box showing six electrons as follows:

Six arrows drawn in 2p box represent 2p6 | Image: Learnool

3s2 indicates that the 3s subshell has 2 electrons. So draw two arrows in the 3s box showing two electrons as follows:

Two arrows drawn in 3s box represent 3s2 | Image: Learnool

3p6 indicates that the 3p subshell has 6 electrons. So draw six arrows in the 3p box showing six electrons as follows:

Six arrows drawn in 3p box represent 3p6 | Image: Learnool

4s2 indicates that the 4s subshell has 2 electrons. So draw two arrows in the 4s box showing two electrons as follows:

Two arrows drawn in 4s box represent 4s2 | Image: Learnool

3d8 indicates that the 3d subshell has 8 electrons. So draw eight arrows in the 3d box showing eight electrons as follows:

Eight arrows drawn in 3d box represent 3d8 | Image: Learnool

That’s it! This is the final orbital diagram of nickel as we have used all 28 electrons.

Next: Copper orbital diagram

Related

More topics

External links

Deep

Learnool.com was founded by Deep Rana, who is a mechanical engineer by profession and a blogger by passion. He has a good conceptual knowledge on different educational topics and he provides the same on this website. He loves to learn something new everyday and believes that the best utilization of free time is developing a new skill.

Leave a Comment