Silicon orbital diagram

The information on this page is ✔ fact-checked.

Silicon orbital diagram
Silicon orbital diagram | Image: Learnool

In the silicon orbital diagram, the 1s subshell accommodates two electrons, the 2s subshell holds another pair, and the 2p subshell encompasses six electrons. Moving to the 3s subshell, it contains two electrons, and the 3p subshell holds two electrons, totaling fourteen electrons.

To illustrate the silicon orbital diagram, begin by determining the number of electrons from the periodic table. Note the electron configuration for reference and follow the three essential rules: the Aufbau principle, Pauli exclusion principle, and Hund’s rule. This systematic approach ensures an accurate representation of silicon’s orbital arrangement.

Steps

Find electrons

Periodic table | Image: Learnool

The atomic number of silicon represents the total number of electrons of silicon. Since the atomic number of silicon is 14, the total electrons of silicon are 14.

Write electron configuration

The electron configuration of silicon is 1s2 2s2 2p6 3s2 3p2.

Now in the next step, start drawing the orbital diagram for silicon.

Draw orbital diagram

Before drawing the orbital diagram, you should know the three general rules.

  • Aufbau principle – electrons are first filled in lowest energy orbital and then in higher energy orbital
  • Pauli exclusion principle – two electrons with the same spin can not occupy the same orbital
  • Hund’s rule – each orbital should be first filled with one electron before being paired with a second electron

Also, you should know the number of orbitals in each subshell.

We can calculate the number of orbitals in each subshell using the formula: 2ℓ + 1

Where, ℓ = azimuthal quantum number of the subshell

For s subshell, ℓ = 0
For p subshell, ℓ = 1
For d subshell, ℓ = 2
For f subshell, ℓ = 3

So each s subshell has one orbital, each p subshell has three orbitals, each d subshell has five orbitals, and each f subshell has seven orbitals.

Now start to draw!

As mentioned above, the electron configuration of silicon is 1s2 2s2 2p6 3s2 3p2. Hence, draw the blank orbital diagram of silicon up to 3p subshell as follows:

Blank orbital diagram of silicon | Image: Learnool

In the above orbital diagram, the box represents an orbital. Each orbital has a capacity of two electrons. And the arrows (↑↓) are drawn inside the box to represent electrons.

Now 1s2 indicates that the 1s subshell has 2 electrons. So draw two arrows in the 1s box showing two electrons as follows:

Two arrows drawn in 1s box represent 1s2 | Image: Learnool

2s2 indicates that the 2s subshell has 2 electrons. So draw two arrows in the 2s box showing two electrons as follows:

Two arrows drawn in 2s box represent 2s2 | Image: Learnool

2p6 indicates that the 2p subshell has 6 electrons. So draw six arrows in the 2p box showing six electrons as follows:

Six arrows drawn in 2p box represent 2p6 | Image: Learnool

3s2 indicates that the 3s subshell has 2 electrons. So draw two arrows in the 3s box showing two electrons as follows:

Two arrows drawn in 3s box represent 3s2 | Image: Learnool

3p2 indicates that the 3p subshell has 2 electrons. So draw two arrows in the 3p box showing two electrons as follows:

Two arrows drawn in 3p box represent 3p2 | Image: Learnool

That’s it! This is the final orbital diagram of silicon as we have used all 14 electrons.

Next: Phosphorus orbital diagram

Related

More topics

External links

Deep

Learnool.com was founded by Deep Rana, who is a mechanical engineer by profession and a blogger by passion. He has a good conceptual knowledge on different educational topics and he provides the same on this website. He loves to learn something new everyday and believes that the best utilization of free time is developing a new skill.

Leave a Comment