Radium electron configuration

The information on this page is ✔ fact-checked.

Radium electron configuration
Radium electron configuration

The radium electron configuration, represented as [Rn] 7s2 or 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2, illustrates the arrangement of electrons within the atom. This configuration can be determined through various methods, including the aufbau principle, periodic table organization, Bohr model representation, or orbital diagram visualization.

Methods

Aufbau principle

  • First, find electrons of radium atom
Periodic table

The atomic number of radium represents the total number of electrons of radium. Since the atomic number of radium is 88, the total electrons of radium are 88.

  • Second, make a table of subshell and its maximum electrons

Calculate the maximum number of electrons each subshell can hold using the formula: 4ℓ + 2

Where, ℓ = azimuthal quantum number of the subshell

For s subshell, ℓ = 0
For p subshell, ℓ = 1
For d subshell, ℓ = 2
For f subshell, ℓ = 3

subshell max. electrons
s 2
p 6
d 10
f 14

This means that,

Each s subshell can hold maximum 2 electrons
Each p subshell can hold maximum 6 electrons
Each d subshell can hold maximum 10 electrons
Each f subshell can hold maximum 14 electrons

  • Finally, use aufbau chart and start writing electron configuration

Remember that we have a total of 88 electrons.

According to the aufbau principle, 1s subshell is filled first and then 2s, 2p, 3s… and so on.

Use 2 electrons for 1s subshell

By looking at the chart, you can see that electrons are first filled in 1s subshell. Each s-subshell can hold a maximum of 2 electrons, so we will use 2 electrons for the 1s subshell.

So the electron configuration will be 1s2. Where, 1s2 indicates that the 1s subshell has 2 electrons.

Now we have used 2 electrons in the 1s subshell, so we have a total of 88 – 2 = 86 electrons left.

Use 2 electrons for 2s subshell

Looking at the chart, after 1s subshell now comes 2s subshell. Again, each s-subshell can hold a maximum of 2 electrons, so we will use 2 electrons for the 2s subshell.

So the electron configuration will be 1s2 2s2. Where, 2s2 indicates that the 2s subshell has 2 electrons.

Again, we have used 2 electrons in the 2s subshell, so we have a total of 86 – 2 = 84 electrons left.

Use 6 electrons for 2p subshell

After 2s subshell now comes 2p subshell. Each p-subshell can hold a maximum of 6 electrons, so we will use 6 electrons for the 2p subshell.

So the electron configuration will be 1s2 2s2 2p6. Where, 2p6 indicates that the 2p subshell has 6 electrons.

Here, we have used 6 electrons in the 2p subshell, so we have a total of 84 – 6 = 78 electrons left.

Use 2 electrons for 3s subshell

After 2p subshell now comes 3s subshell. Each s-subshell can hold a maximum of 2 electrons, so we will use 2 electrons for the 3s subshell.

So the electron configuration will be 1s2 2s2 2p6 3s2. Where, 3s2 indicates that the 3s subshell has 2 electrons.

Here, we have used 2 electrons in the 3s subshell, so we have a total of 78 – 2 = 76 electrons left.

Use 6 electrons for 3p subshell

After 3s subshell now comes 3p subshell. Each p-subshell can hold a maximum of 6 electrons, so we will use 6 electrons for the 3p subshell.

So the electron configuration will be 1s2 2s2 2p6 3s2 3p6. Where, 3p6 indicates that the 3p subshell has 6 electrons.

Here, we have used 6 electrons in the 3p subshell, so we have a total of 76 – 6 = 70 electrons left.

Use 2 electrons for 4s subshell

After 3p subshell now comes 4s subshell. Each s-subshell can hold a maximum of 2 electrons, so we will use 2 electrons for the 4s subshell.

So the electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s2. Where, 4s2 indicates that the 4s subshell has 2 electrons.

Here, we have used 2 electrons in the 4s subshell, so we have a total of 70 – 2 = 68 electrons left.

Use 10 electrons for 3d subshell

After 4s subshell now comes 3d subshell. Each d-subshell can hold a maximum of 10 electrons, so we will use 10 electrons for the 3d subshell.

So the electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s2 3d10. Where, 3d10 indicates that the 3d subshell has 10 electrons.

Here, we have used 10 electrons in the 3d subshell, so we have a total of 68 – 10 = 58 electrons left.

Use 6 electrons for 4p subshell

After 3d subshell now comes 4p subshell. Each p-subshell can hold a maximum of 6 electrons, so we will use 6 electrons for the 4p subshell.

So the electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6. Where, 4p6 indicates that the 4p subshell has 6 electrons.

Here, we have used 6 electrons in the 4p subshell, so we have a total of 58 – 6 = 52 electrons left.

Use 2 electrons for 5s subshell

After 4p subshell now comes 5s subshell. Each s-subshell can hold a maximum of 2 electrons, so we will use 2 electrons for the 5s subshell.

So the electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2. Where, 5s2 indicates that the 5s subshell has 2 electrons.

Here, we have used 2 electrons in the 5s subshell, so we have a total of 52 – 2 = 50 electrons left.

Use 10 electrons for 4d subshell

After 5s subshell now comes 4d subshell. Each d-subshell can hold a maximum of 10 electrons, so we will use 10 electrons for the 4d subshell.

So the electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10. Where, 4d10 indicates that the 4d subshell has 10 electrons.

Here, we have used 10 electrons in the 4d subshell, so we have a total of 50 – 10 = 40 electrons left.

Use 6 electrons for 5p subshell

After 4d subshell now comes 5p subshell. Each p-subshell can hold a maximum of 6 electrons, so we will use 6 electrons for the 5p subshell.

So the electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6. Where, 5p6 indicates that the 5p subshell has 6 electrons.

Here, we have used 6 electrons in the 5p subshell, so we have a total of 40 – 6 = 34 electrons left.

Use 2 electrons for 6s subshell

After 5p subshell now comes 6s subshell. Each s-subshell can hold a maximum of 2 electrons, so we will use 2 electrons for the 6s subshell.

So the electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2. Where, 6s2 indicates that the 6s subshell has 2 electrons.

Here, we have used 2 electrons in the 6s subshell, so we have a total of 34 – 2 = 32 electrons left.

Use 14 electrons for 4f subshell

After 6s subshell now comes 4f subshell. Each f-subshell can hold a maximum of 14 electrons, so we will use 14 electrons for the 4f subshell.

So the electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14. Where, 4f14 indicates that the 4f subshell has 14 electrons.

Here, we have used 14 electrons in the 4f subshell, so we have a total of 32 – 14 = 18 electrons left.

Use 10 electrons for 5d subshell

After 4f subshell now comes 5d subshell. Each d-subshell can hold a maximum of 10 electrons, so we will use 10 electrons for the 5d subshell.

So the electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10. Where, 5d10 indicates that the 5d subshell has 10 electrons.

Here, we have used 10 electrons in the 5d subshell, so we have a total of 18 – 10 = 8 electrons left.

Use 6 electrons for 6p subshell

After 5d subshell now comes 6p subshell. Each p-subshell can hold a maximum of 6 electrons, so we will use 6 electrons for the 6p subshell.

So the electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6. Where, 6p6 indicates that the 6p subshell has 6 electrons.

Here, we have used 6 electrons in the 6p subshell, so we have a total of 8 – 6 = 2 electrons left.

Use last 2 electrons for 7s subshell

After 6p subshell now comes 7s subshell. Each s-subshell can hold a maximum of 2 electrons, and we also have 2 electrons left, so we will use that 2 electrons for the 7s subshell.

So the electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2. Where, 7s2 indicates that the 7s subshell has 2 electrons.

Therefore, the final electron configuration of radium is 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2. And the condensed/abbreviated electron configuration of radium is [Xe] 7s2.

Where, Xe is xenon

Periodic table

  • First, get periodic table chart with spdf notation
Periodic table blocks

The above image shows periodic table blocks.

The ‘s’ in s block represents that all s block elements have their valence electrons in s subshell. Similarly, the ‘p’ in p block represents that all p block elements have their valence electrons in p subshell. And so on for d block and f block.

  • Second, mark location of radium on periodic table

Radium is the s block element located in group 2 and period 7. Hence, mark the location of radium on the periodic table as follows:

Mark location of radium on periodic table
  • Finally, start writing electron configuration

Remember that: each s subshell can hold maximum 2 electrons, each p subshell can hold maximum 6 electrons, each d subshell can hold maximum 10 electrons, and each f subshell can hold maximum 14 electrons.

Start writing electron configuration from the very first element (i.e., hydrogen) all the way up to radium.

Start from 1s and write till Ra for full electron configuration

So the electron configuration of radium will be 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2.

Bohr model

Radium Bohr model

In the above image, 1 represents the 1st electron shell. Similarly, 2 represents the 2nd electron shell, 3 represents the 3rd electron shell, 4 represents the 4th electron shell, 5 represents the 5th electron shell, 6 represents the 6th electron shell, and 7 represents the 7th electron shell.

The 1st electron shell contains 1s subshell, the 2nd electron shell contains 2s and 2p subshells, the 3rd electron shell contains 3s, 3p, and 3d subshells, the 4th electron shell contains 4s, 4p, 4d, and 4f subshells, the 5th electron shell contains 5s, 5p, and 5d subshells, the 6th electron shell contains 6s and 6p subshells, and the 7th electron shell contains 7s subshell.

We know that each s subshell can hold maximum 2 electrons, each p subshell can hold maximum 6 electrons, each d subshell can hold maximum 10 electrons, and each f subshell can hold maximum 14 electrons.

Also, we have to make sure that the electron configuration will match the order of aufbau principle (i.e., the 1s subshell is filled first and then 2s, 2p, 3s… and so on).

So the electron configuration of radium will be 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2.

Where,

1s2 indicates that the 1s subshell has 2 electrons
2s2 indicates that the 2s subshell has 2 electrons
2p6 indicates that the 2p subshell has 6 electrons
3s2 indicates that the 3s subshell has 2 electrons
3p6 indicates that the 3p subshell has 6 electrons
4s2 indicates that the 4s subshell has 2 electrons
3d10 indicates that the 3d subshell has 10 electrons
4p6 indicates that the 4p subshell has 6 electrons
5s2 indicates that the 5s subshell has 2 electrons
4d10 indicates that the 4d subshell has 10 electrons
5p6 indicates that the 5p subshell has 6 electrons
6s2 indicates that the 6s subshell has 2 electrons
4f14 indicates that the 4f subshell has 14 electrons
5d10 indicates that the 5d subshell has 10 electrons
6p6 indicates that the 6p subshell has 6 electrons
7s2 indicates that the 7s subshell has 2 electrons

Orbital diagram

Radium orbital diagram

The above orbital diagram shows that the 1s subshell has 2 electrons, the 2s subshell has 2 electrons, the 2p subshell has 6 electrons, the 3s subshell has 2 electrons, the 3p subshell has 6 electrons, the 4s subshell has 2 electrons, the 3d subshell has 10 electrons, the 4p subshell has 6 electrons, the 5s subshell has 2 electrons, the 4d subshell has 10 electrons, the 5p subshell has 6 electrons, the 6s subshell has 2 electrons, the 4f subshell has 14 electrons, the 5d subshell has 10 electrons, the 6p subshell has 6 electrons, and the 7s subshell has 2 electrons.

So the electron configuration of radium will be 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2.

Next: Neon electron configuration

Related

More topics

External links

Deep

Learnool.com was founded by Deep Rana, who is a mechanical engineer by profession and a blogger by passion. He has a good conceptual knowledge on different educational topics and he provides the same on this website. He loves to learn something new everyday and believes that the best utilization of free time is developing a new skill.

Leave a Comment